TimeStudio process manual – Pupil analysis

Author: Nils Olofsson and Pär Nyström Last revision: 2013-04-15

Index

TimeStudio process manual – Pupil analysis1
1. Purpose
2. Definitions2
3. Dataset2
4. Overview
5. Step-by-step instructions
1.1 Launch MATLAB and TimeStudio
1.2 Add data and define participants
1.3 Read added data files
1.4 Change names of events in dataset
1.5 Remove events with inadequate amount of data
1.6 Remove NaN-values14
1.7 Applying an averaging filter15
1.8 Statistical extraction and visualization16
1.9 View results
4. References
5. Acknowledgements
Appendix A – Entries for events_modification plugin used in 3.4
Appendix B – Supported file formats for core_read_file23

1. Purpose

This manual contains step by step instructions of how to analyse pupil data in the TimeStudio framework. The manual is written for novel users of TimeStudio.

This manual assumes that you have downloaded the latest TimeStudio core and the data files mentioned below. If you do not know how to start TimeStudio, please double check that you have followed the steps described in http://TimeStudioproject.com/getting-started

2. Definitions

Buttons that need to be activated in order to execute a command or fields within the workspace are indicated with quotation marks in the text below. Plugin names are marked with bold. Letters in red circles in figures and text indicate where in TimeStudio a particular action takes place.

3. Dataset

The dataset includes recordings of eye movements recorded with a Tobii 1750 eye tracker and exported as text files from ClearView (other formats are also supported, for details see Appendix B). In this study five participants were asked to multiply two digits that appear one after the other on a screen. Using this paradigm Ahern and Betty (1979) demonstrated that the pupil dilates more following difficult than easy multiplications (see **Fel! Hittar inte referenskälla.**). These findings were interpreted in support the notion that pupil dilations are mediated by cognitive load (for alternative sources of pupil dilation in humans see Laeng, Sirois, and Gredebäck, 2012).

Figure 1. Pupil size as a function of processing load during a multiplication task (adapted from Ahern & Betty, 1974).

The files needed to follow this manual are:

pupil_subj1.txt pupil_subj2.txt pupil_subj3.txt pupil_subj4.txt pupil_subj5.txt Each file is a recording of one test subject and the files can be downloaded from

http://www.TimeStudioproject.com/manuals/pupil_manual_datafiles.zip

4. Overview

This tutorial demonstrates how TimeStudio can be used to analyse pupil dilation data using the example specified in section 2. In order to complete the analysis a series of operations need to be performed in TimeStudio.

- Launch MATLAB and TimeStudio
- Add data and define participants
- Read added data files
- Change names of events in dataset
- Remove NaN-values
- Apply average filter
- Statistical extraction and visualization
- View results

When this tutorial is complete the workflow and results windows should look identical to Figure 2, replicating the original findings by Ahern and Beatty (1979).

Figure 2. The final state of the workflow (left) and a graph showing the average pupil size per condition (right).

5. Step-by-step instructions

1.1 Launch MATLAB and TimeStudio

1. Start by launching MATLAB.

- 2. Either add the TimeStudio folder to the MATLAB path, or move into the TimeStudio folder.
- 3. Start TimeStudio by typing 'TimeStudio' in the MATLAB command window and press enter.

When TimeStudio starts the main window is displayed as seen in

Figure 3.

The empty field to the left (**Fel! Hittar inte referenskälla.**A) is called "subjects" or "list of subjects" and the empty field to the right (**Fel! Hittar inte referenskälla.**B) is called "plugin workflow".

1.2 Add data and define participants

First we need to add the data files to the workflow.

Press the "Add multiple subjects" button (

- 1. Figure 3C) in the main TimeStudio window. This will open a file browser window.
- 2. Locate the five data files that belong to this demonstration, they should be named "pupil_subjx.txt" with x being 1 to 5.
- 3. In the pop-up file browser window (Figure 4), mark all five files and press the "Open"button (Figure 4A) to add all five files and create an individual subject for each file.

This should add five subjects to the subject list (Figure 5A).

Figure 3. TimeStudio immediately after start-up.

🕖 🗸 🕌 « mani	ualer	 manual datafiles 	•	Search man	ual datafiles		
Organize 🔻 New folder							
🔆 Favorites	^	Name	Date modified	Туре	Size		
🧮 Desktop		📋 pupil_subj1	12/03/2013 07:11	Text Document	2,825 KB		
🗼 Downloads	=	pupil_subj2	12/03/2013 09:05	Text Document	4,820 KB		
💔 Dropbox		pupil_subj3	12/03/2013 09:20	Text Document	2,270 KB		
📃 Recent Places		📄 pupil_subj4	12/03/2013 09:23	Text Document	2,347 KB		
		pupil_subj5	12/03/2013 09:27	Text Document	3,277 KB		
🥽 Libraries		📄 static_aoi_subj1	27/03/2013 22:02	Text Document	2,303 KB		
Documents		📄 static_aoi_subj2	27/03/2013 22:02	Text Document	2,317 KB		
🎝 Music		📄 static_aoi_subj3	27/03/2013 22:02	Text Document	2,309 KB		
Pictures		📄 static_aoi_subj4	27/03/2013 22:01	Text Document	2,304 KB		
😸 Videos	-	📄 static_aoi_subj5	27/03/2013 22:01	Text Document	2,321 KB		
File <u>n</u> ame: "pupil_subj5" "pupil_subj1" "pupil_subj2" "pu ▼ All Files ▼							

Figure 4. The file browser and the data files

Timestudio - untitled.study	
File Tools Subject Plugin Help SUBJECTS Add single Add single Add multiple Pupil_subj1.txt pupil_subj2.txt pupil_subj3.txt pupil_subj5.txt State	Do selected work

Figure 5. The TimeStudio main window after files has been added.

1.3 Read added data files

After we have created a list of subjects with associated data files we will need to read the content of those files into Matlab memory. This is done by adding a plugin called **core_read_file** to the study.

1. Press the "Add plugin" button (Figure 5B) in the TimeStudio main window to bring up the pop up menu for selecting and adding a plugin to the plugin workflow. Hover to "core" and select **core_read_file** from the pop-out menu. This should bring up the window seen in Figure 6.

🚺 core_read_file.m*					[- • •
Setting default	▼ Save as ?	I/O core				Use plugin
Match files	.txt; .tsv; .csv	Heade	r Lines 0	🛛 🕑 ок	range	
Data field		Header Se	parator \t	Multi	ply by	
	A	Additiona	al Lines 1		Type mean 🔻]
	~	D	elimiter		Comma as dot 🗵	
Add variable			Scan	Da	ata bindings	
	time events		-		•	
	3					
		binds to		>>		
	-		-		-	
	Remove variable				Remove binding	

Figure 6. The core_read_file window.

- 2. Start with adding a data field. Above A, in Figure 6, enter 'eyetracking'.
- 3. The next step is to add variables. They are entered by typing the variable name in the "Add variable"-box that is below the A, and pressing enter. In this way enter the variables 'x',' y', and 'pupil', one by one.

As can be seen in the listbox B, there are two predefined variables – 'events' and 'time'. These are used and required by almost all plugins and are therefore added by default.

- 4. After this, the number of header lines in the files to be read should be entered in the "Header Lines"-box (C in Figure 6). In our case, enter '18' in this box, and the properties (column names, that is) from our input files will be listed in the listbox at D in Figure 6.
- 5. This enables us to bind our variables to different data columns in the input files. Select 'x' in the variable listbox (B in Figure 6), then select 'GazepointX' in the properties listbox (D) and finally press the ">>"-button to the left of D the figure. This will create a binding that will be displayed in the "Data bindings"-listbox.

The results so far can be seen in Figure 7.

- 6. Continue with binding the variable 'y' to 'GazepointY' in the same way.
- 7. 'pupil' should be bound with the columns 'Pupil (R)' and 'Pupil (L)'. Select both of these and do as before, but observe the "Type"-box next to A in Figure 7. The value here should be 'mean'. This means that 'pupil' will be calculated as the mean value of 'Pupil (R)' and

'Pupil (L)'.

- 8. Next up is to bind 'time' to 'Timestamp'. This is done in the same way as for the other variables except that '0.001' should be entered into the "Multiply by"-box (next to A in Figure 7). This means that the values of Timestamp are multiplied by 0.001, which gives is the time in seconds in this example.
- 9. As the final binding we should bind 'events' with 'Description'. Now the "Type" should be set to 'event'.
- 10. The final steps are to set the acceptable range for some of the variables. Select 'x' in the variable-listbox (at B in Figure 7), and then enter '0 1024' in the "OK range"-box (close to A in Figure 7).
- 11. Next, select 'y' and set the ok range to '0 768', and finish by selecting 'pupil' and setting the range to '2 10'.

Now that we have made all the settings required to read our data files we need to save them before using them.

- 12. Press "Save as" (above C in Figure 7). In the pop-up window enter some sensible name (e.g. 'pupil'), then press "Save".
- 13. Press "Use plugin" (at D in Figure 7) to close the settings window and add this plugin with these settings to the plugin workflow.

🛃 core_read_file.m*							- • •
Setting default	• Save as ?	! 1/0	core			D	Use plugin
Match files	.txt; .tsv; .csv		Header Lines	18	OK range		
Data field	eyetracking	Hea	ader Separator	١t	Multiply by		A
		A	dditional Lines	1	Туре	mean 💌	-
			Delimiter		Comr	na as dot 🗵	
Add variable	1		Scan		Data bind	lings	
	time events x y pupil B Remove variable	binds to	GazepointX (R) GazepointY (R) CamX (R) Distance (R) Pupil (R) Validity (R) Fixation GazepointX GazepointX GazepointY Event Event Key Data 1 Data 2 Description Stimuli ID	E	Gazepoint	x f	

Figure 7. Adding bindings in core_read_file.

🛃 Timestudio - untitled.study		- 0 -
File Tools Subject Plugin Help		
SUBJECTS	PLUGIN WORKFLOW	
Add single Add multiple pupil_subj1.txt pupil_subj2.txt pupil_subj3.txt pupil_subj4.txt pupil_subj5.txt	Add plugin	Do selected work
-		50 100 1 101 men (%)

Figure 8. The TimeStudio main window after the plugin for file reading has been added.

Back in the main window:

- 1. Select all five subjects in the subject field, and select **core_read_file** in the plugin workflow (as can be seen in Figure 8).
- 2. Press the "Do selected work" button (Figure 8A) to read the data from the added files into the subjects.

While TimeStudio is processing a wait bar appears, and additional information is printed in the MATLAB command window.

1.4 Change names of events in dataset

Now we need to change the names of the events in the dataset so that events of the same kind are named the same.

Events which correspond to the subject performing a task classified as "difficult" should be named "difficult" etc. The plugin **events_modification** can be used to modify events by changing event values. All events have a name and a timestamp, and we will use the plugin to modify the name of some events but not the timestamp (other parameters may be assigned to any event by using this plugin, but we don't need that in this particular example. For more information on this see the help-file for the plugin). The plugin uses a list of rows and columns to modify the values. The plugin finds events which has a value in the first column and changes or adds the values in all other columns. This plugin can be used in many situations, but a common way to work with the plugin is described below.

🚺 events_i	modification	.m*			
Setting	default	▼ Save as ? ! I/O events		Use	plugin
Fie	ld name	B Scan event names	Match on	event fields	•
					*
		C			
E	Event list				-

Figure 9. The empty setting window for the events_modification plugin.

- 1. As before, press "Add plugin" from the main menu to bring up the pop up for selecting plugins, press "events" and select **events_modification**. This will open up the settings window for the plugin, see Figure 9.
- 2. Browse (Figure 9A) for the name of the data field to use. The only field visible should be 'eyetracking'. Select 'eyetracking' and press "done".
- 3. Then press the "Scan event names" button (Figure 9B), and the previously large empty field named "Event List" (Figure 9C) should now be filled with different names for events that are present in the data set.
- 4. Open a spread sheet editor such as Microsoft Excel or OpenOffice Calc.
 - a. Select and copy all entries in the "Event list" by clicking in the event list and pressing Ctrl+A followed by Ctrl+C, and paste the list into the spread sheet editor.
 - b. Now we remove the events we are not interested in modifying from the spread sheet. That should be all rows except the top one and the ones that are named something with either 'easy', 'medium' or 'difficult'.
 - c. We also remove the entire column named 'variable0' since we are not interested in modifying those entries.
 - d. Add a new column called 'name' next to the one that should already be present. For every row with an entry named something with "difficult" in the original column

named 'name', enter just 'difficult' in the new column.

- e. Make the analogous entries for the rows named something with 'easy' and 'medium'.
- f. Select all active cells in the spreadsheet and copy them.
- 5. Move back to the **events_modification** window, clear the "Event list" field and then paste the entries from the spread sheet. It should now look like the window in **Fel! Hittar inte referenskälla.**

A complete list of how the entry into this field should look can be seen in Appendix A, which can be cut and pasted into the event list field (instead of step 4 above).

- 6. Press the "Save as" button and save the setting as 'pupil'.
- 7. Press "Use plugin" to add the plugin to the "Plugin workflow" in the TimeStudio main window.

Back in the main window (Figure 11)

8. Select all subjects and the **events_modification** plugin, then press "Do selected work" button to apply the modifications to the events.

📣 events_modifi	cation.m*						
Setting pupil	•	Save as	?!!!/0	events		Use	olugin
Field nar	ne eyetrackin	g B	Scan event names) N	latch on	event fields	•
	name	name					•
	difficult11x10	6 difficult					
	difficult11x1	difficult					
	difficult11x1	difficult					
	difficult12x1	6 difficult					E
	difficult12x1	7 difficult					
	difficult12x1	3 difficult					
	difficult12x1	9 difficult					1000
	difficult13x10	difficult					
	difficult13x1	difficult					
	difficult13x1	difficult					
	difficult13x8	difficult					
	difficult14x10	6 difficult					
	difficult14x1	7 difficult					
	difficult14x1	3 difficult					
	difficult14x1	9 difficult					
	easy1x6	easy					
	easy1x7	easy					
	easy1x8	easy					
Event I	st easy2x6	easy					-
	Cu3y2A0	ousy					

Figure 10. The setting window for the event_modification plugin with the settings we will use.

Figure 11. The TimeStudio main window after the plugin for event modification has been added.

1.5 Remove events with inadequate amount of data

The next step is to do some basic pre-processing of the pupil data. Some events contain a large amount of data with bad values. These are denoted by NaN (not a number). To remove events that contain a lot of bad data the plug-in **events_reject** can be used. In Figure 12 the plug-in is shown. This is the state after some values have been chosen.

- 1. As before, press "Add plugin" from the main menu to bring up the pop up for selecting plugins, press "events" and select **events_reject**.
- 2. Browse for data field at Figure 12A and select 'eyetracking'.
- 3. Press the "B"-button at B in Figure 12. Select the event name 'easy'. Now we have stated which events to study.
- 4. Enter the time range '0 8' in position C in Figure 12, this will determine what interval around the event-time we will look at.
- 5. The next step is to select what is to be the X- & Y-data. Press the "B"-button and select 'time' for X series name (Figure 12D) and 'pupil' for Y series name (Figure 12E).
- 6. Now we can examine the data.
 - a. By clicking on a rectangle the event will be plotted as an x-y plot in a separate window. See Figure 13 for example.
 - b. The different events can be inspected by moving around using the arrows on the keyboard. By pressing space an event is rejected. This is shown by coloring that rectangle red. Pressing space again will un-reject it
 - c. By pressing the 'p' button on the keyboard the x-y plot will plot the derivative of the ydata instead (actually it is the diff of y, see matlab for info on diff). Pressing 'p' again will switch back to ordinary y-data.

Figure 12. The event_reject window.

- 7. Instead of rejecting events manually we can do it in a more automatic way. Fill in the lowest acceptable percentage in the "Required data (%)"-box at position Figure 12F. A suitable number for this example is '40'. By pressing the "Update" button (Figure 12G) all events where the amount of bad data exceeds this percentage will be rejected (marked with red). When the plug-in is run in the workflow all the rejected events will be renamed with the string '_REJECTED' appended to their name. This way they will not be part of the rest of the workflow.
- 8. Save the plug-in settings, like in the previous examples. A suitable name is 'pupil_easy'. Then press "Use plugin".
- 9. Now this procedure should be repeated for the other events, 'medium' and 'difficult. Save the settings as 'pupil_medium' and 'pupil_difficult'. The easiest way to do this is to
 - a. Press "Add plugin" and select events_reject.
 - b. Change the setting to 'pupil_easy'.
 - c. Change "Event name" to 'medium' by browsing with the "B"-button.
 - d. Save as 'pupil_medium'.
 - e. Press "Use plugin"

and then repeat for the 'difficult' events.

Figure 13. The inspection window from events_reject.

The TimeStudio main window should now look like Figure 14. Select the three **events_reject** and press "Do selected work". A window that show how many events that were rejected will open. In our case, there will be three windows, one for each event (easy, medium and difficult). For more ways to automatically reject data, see the plug-in documentation.

Figure 14. The TimeStudio main window after the events_reject plug-ins have been added.

1.6 Remove NaN-values

Although we removed the events with lots of missing data there are still evens that contain some bad data. These events will be handled by interpolation over the data points with bad (NaN – Not A Number) values. This is done by adding a plugin called **core_interpolate_gaps** to the study.

- 1. Press "Add plugin" and select the **core_interpolate_gaps** pluging. The plugin can be seen in Figure 15. Now we should enter the values shown there.
- 2. First browse for the data field (Figure 15A), and select 'eyetracking' in the pop-up window.
- 3. Browse for the data series (Figure 15B), and select 'pupil' in the pop-up window.
- 4. Enter '5' into the "Max sample gap" field (Figure 15C) and make sure the boxes to the right (Figure 15D) are selected like they are in the figure.

This will interpolate over gaps with five or less consecutive bad data points. As always, more information about a plugin should be available from the plugin help.

- 5. Save as 'pupil' and press "Use plugin".
- 6. In the TimeStudio main window, select all subjects and the **core_interpolate_gaps** plugin, and then press "Do selected work" (Figure 16).

🛃 core_interpolate_	🖉 core_interpolate_gaps.m*				
Setting default	▼ Save as ?	! I/O core		Use	plugin
Datafield	eyetracking	Outliers (std)		Use outlie removal	
Series	pupil	Range (from to)		Use range removal	
Туре	linear 💌	Max sample gap	5 🕝	Use mDgap	
		Maximum jump		Use max jump	
		Туре	Relative 💌		
				Plot results	

Figure 15. The setting window for the core_interpolate_gaps plugin.

Figure 16. The TimeStudio main window after the plugin for interpolation has been added.

1.7 Applying an averaging filter

Now we will apply a moving average filter that reduce noise and smooth the data.

- 1. Press "Add plugin" and select the **core_filter_moving_average** plugin. The plugin can be seen in Figure 17. We should now enter the settings seen there.
- 2. Browse for the data field (Figure 17A), and select 'eyetracking' in the pop-up window.
- 3. Browse for the data series (Figure 17B), select 'pupil' in the pop-up window.
- 4. Enter a value in the field "Moving average" (Figure 17C) which sets the window length of the moving filter (in this manual we use a window length of 5 samples).
- 5. Save as 'pupil' and press "Use plugin".
- 6. In the TimeStudio main window, select all subjects and the **core_filter_moving_average** plugin, then press "Do selected work" (Figure 18) to apply the filter to the pupil data for all subjects.

Figure 17. The setting window for the core_filter_moving_avarage plugin.

Timestudio - untitled.study		
File Tools Subject Plugin H	lelp	
SUBJECTS	PLUGIN WORKFLOW	
pupil_subj1.txt	core_read_file (pupil)	
pupil_subj2.txt pupil_subj3.txt	events_modification (pupil) events_reject (pupil_easy)	
pupil_subj4.txt pupil_subj5.txt	events_reject (pupil_medium) events_reject (pupil_difficult)	Do selected work
	core filter moving average (pupil)	
		0 50 100
	-	mem (%)
5/5		A H I H MAN

Figure 18. The TimeStudio main window after the plugin for filtering has been added.

1.8 Statistical extraction and visualization

The final step is the analysis of the data. This includes cutting out trials from the pupil time series (which are time locked to the events named easy, medium and difficult), baseline correcting each trial and calculating a mean pupil size at a particular time window in the trial. All this is done within a plugin called **core_event_related_data_extraction**.

- 1. Press "Add plugin" and select the **core_event_related_data_extraction** plugin. The plugin can be seen in Figure 19. We should now enter the settings seen there.
- 2. Browse for the data field (Figure 19A), select 'eyetracking' in the pop-up window.
- 3. Browse for the data series (Figure 19B), select 'pupil' in the pop-up window.
- 4. Browse for event names (Figure 19C), select the three entries 'difficult', 'easy' and 'medium'.

- 5. Enter the values for "Time range" (Figure 19D), which is two values separated by a white space. The first number is how many seconds from the event start time each trial should start at. The second value is how many seconds from the event start time the trial should end at. Both positive and negative values are accepted, but the second value should always be larger than the first value to get trials with a positive time length. In this example we use the values '0 8'.
- 6. Enter the values for "Baseline" and "Analysis interval" (Figure 19E and Figure 19F) in the same manner as the time range: two values separated by a white space, meaning [from to] in relation to the start of the event. In this example we use the values '0 2' for the baseline and '6 7' as analysis interval.
- 7. Next, select the plot options (Figure 19G) and what to show (Figure 19H). In this manual we used 'groups as figures' and checked the boxes "Show mean" and "Show stderr".
- 8. Save as 'pupil' and press "Use plugin".
- 9. In the TimeStudio main window, select all subjects and the **core_event_related_data_extraction** plugin, then press "Do selected work" to apply the analysis on the subjects (Figure 20).

dore_event_related	l_data_extraction.m*		
Setting default	▼ Save as	? ! I/O core	Use plugin
Field name	eyetracking B	Plot timeseries	2
Serie name	pupil B	B Plot type	proups as 💌 🕒
Event name	difficult; easy; m	Subject groups	
Time range	08	Show mean	2
Resample rate	120	Show individuals	• (i)
Detrend		Show stderr	2
Z-score		Mark maxima	
Baseline	02	Mark minima	
Analysis interval	67		
Measure	mean		
Trial rejection			
Store values in			

Figure 19. The setting window for the core_event_related_data_extraction plugin.

Figure 20. The TimeStudio main window after the plugin for analysis has been added.

1.9 View results

The final result can be seen in Figure 21and Figure 22. Note that the complete result is not visible in Figure 18 but the text extends well beyond the border of the window that can be seen in the figure. In this example the pupil dilates more (from the baseline) in the difficult condition than the medium condition. Pupil dilations are also higher in the medium than in the easy condition. Please compare this graph with prior findings by Ahern and Beatty (1979) in Figure 1.

Figure 21 shows the mean pupil size over time as a thicker line and the standard error as transparent patches. The results show that difficult trials dilate the pupil more than the easy ones. The shaded time interval is the analysis interval, and the mean pupil size in this time interval is calculated for each trial. The result of this calculation is shown in Figure 22.

Figure 22 is a text field with the mean pupil size in the analysis interval for all trials and all subjects. You can now copy all these values by clicking in the text field and pressing Ctrl+A followed by Ctrl+C. Paste the values into your favourite statistical analysis program (SPSS, Statistica, Excel etc.) to further analyse your data (remove outliers, do the statistical tests of your choice etc.).

Also worth mentioning is that during this demonstration all plugins has been applied one by one as they were added. It is also possible to first add all plugins (still in this particular order) to the study and then applying them all at once by selecting all subjects and all plugins and then pressing the "Do selected work" button.

Figure 21 Plotted result.

🛃 Results	;					,
Results Eve mean	ntRelatedData	Extraction				^
Subject pupil_subj1.	Group txt	Trial1 difficult 0.04280	easy 0.02306	medium -0.10676	Trial2 difficult -0.35342	easy -0.00078
pupil_subj2. pupil_subj3. pupil_subj4.	txt txt txt	0.39698 NaN 0.53759	-0.45642 1.82082 -0.55560	-0.07698 0.50911 0.29135	0.06481 0.92679 0.77196	0.66229 0.07404 -0.39868
pupil_subj5.	txt	0.07464	-0.14476	NaN	0.27500	0.29443
•	1					

Figure 22 Results as text output.

4. References

Ahern, S., & Beatty, J. (1979). Pupillary responses during information processing vary with Scholastic Aptitude Test scores. *Science*, 205(4412), 1289-1292.

Laeng, B., Sirois, S., & Gredeback, G. (2012). Pupillometry: A Window to the Preconscious? *Perspectives on Psychological Science*, *7*(1), 18-27.

5. Acknowledgements

The authors want to thank the following people for comments and suggestions for this manual and for testing the workflow: Gustaf Gredebäck, Terje Falck-Ytter, Joshua Jovrud, Tommie Forslund, Christine Fawsett and Ida Hensler. The manual was funded by grants ERC-StG- 312292-CACTUS and the Swedish Research Council in partnership with FAS, FORMAS and VINNOVA [Cross-disciplinary research programme concerning children's and young people's mental health; grant number 259 - 2012-24].

Appendix A – Entries for events_modification plugin used in 3.4

name name difficult11x16 difficult difficult11x17 difficult difficult11x18 difficult difficult11x19 difficult difficult difficult12x16 difficult12x17 difficult difficult12x18 difficult difficult12x19 difficult difficult13x16 difficult difficult difficult13x17 difficult difficult13x18 difficult13x19 difficult difficult difficult13x8 difficult14x16 difficult difficult14x17 difficult difficult14x18 difficult difficult14x19 difficult easy1x6 easy easy1x7 easy easy1x8 easy easy1x9 easy easy2x6 easy easy2x7 easy easy2x8 easy easy2x9 easy easy3x6 easy easy3x7 easy easy3x8 easy easy3x9 easy easy4x6 easy easy4x7 easy easy4x8 easy easy4x9 easy easy8x3 easy medium6x11 medium medium6x12 medium medium medium6x13 medium6x14 medium medium6x6 medium medium7x11 medium medium7x12 medium medium7x13 medium medium7x14 medium medium8x11 medium medium8x12 medium medium8x13 medium medium medium8x14 medium9x11 medium medium9x12 medium medium9x13 medium medium9x14 medium

Appendix B – Supported file formats for core_read_file

FileParser	FileFormat	Support
Tobii Text File	ClearView CombinedData text export	Full
Tobii Text File	TobiiStudio CombinedData text	Full
	export	
Tobii Text File	TobiiStudio v.3 text export	Full
Eprime File	Eprime file format	Partial

The **core_read_file** plugin can parse the following formats: